


Understanding Engineering Mathematics

Why is knowledge of mathematics important in engineering?

A career in any engineering or scientific field will
require both basic and advanced mathematics. Without
mathematics to determine principles, calculate dimen-
sions and limits, explore variations, prove concepts, and
so on, there would be no mobile telephones, televisions,
stereo systems, video games, microwave ovens, comput-
ers, or virtually anything electronic. There would be no
bridges, tunnels, roads, skyscrapers, automobiles, ships,
planes, rockets or most things mechanical. There would
be no metals beyond the common ones, such as iron
and copper, no plastics, no synthetics. In fact, society
would most certainly be less advanced without the use
of mathematics throughout the centuries and into the
future.

Electrical engineers require mathematics to design,
develop, test or supervise the manufacturing and instal-
lation of electrical equipment, components, or systems
for commercial, industrial, military or scientific use.

Mechanical engineers require mathematics to perform
engineering duties in planning and designing tools,
engines, machines and other mechanically functioning
equipment; they oversee installation, operation, mainte-
nance and repair of such equipment as centralised heat,
gas, water and steam systems.

Aerospace engineers require mathematics to perform a
variety of engineering work in designing, constructing
and testing aircraft, missiles and spacecraft; they con-
duct basic and applied research to evaluate adaptability
of materials and equipment to aircraft design and
manufacture and recommend improvements in testing
equipment and techniques.

Nuclear engineers require mathematics to conduct
research on nuclear engineering problems or apply

principles and theory of nuclear science to problems
concerned with release, control and utilisation of nuclear
energy and nuclear waste disposal.

Petroleum engineers require mathematics to devise
methods to improve oil and gas well production and
determine the need for new or modified tool designs;
they oversee drilling and offer technical advice to
achieve economical and satisfactory progress.

Industrial engineers require mathematics to design,
develop, test and evaluate integrated systems for man-
aging industrial production processes, including human
work factors, quality control, inventory control, logis-
tics and material flow, cost analysis and production
coordination.

Environmental engineers require mathematics to
design, plan or perform engineering duties in the preven-
tion, control and remediation of environmental health
hazards, using various engineering disciplines; their
work may include waste treatment, site remediation or
pollution control technology.

Civil engineers require mathematics in all levels in
civil engineering – structural engineering, hydraulics
and geotechnical engineering are all fields that employ
mathematical tools such as differential equations, tensor
analysis, field theory, numerical methods and operations
research.

Knowledge of mathematics is therefore needed by each
of the engineering disciplines listed above.

It is intended that this text – Understanding Engineer-
ing Mathematics – will provide a step-by-step approach
to learning all the fundamental mathematics needed for
your engineering studies.
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Preface

Studying engineering, whether it is mechanical, elec-
trical, aeronautical, communications, civil, construction
or systems engineering, relies heavily on an understand-
ing of mathematics. In fact, it is not possible to study
any engineering discipline without a sound knowledge
of mathematics. What happens, then, when a student
realises he/she is very weak at mathematics – an increas-
ingly common scenario? The answer may hopefully
be found in this textbook Understanding Engineering
Mathematics which explains as simply as possible the
steps needed to become better at mathematics and hence
gain real confidence and understanding in their chosen
engineering subject.

Understanding Engineering Mathematics is an amal-
gam of three books – Basic Engineering Mathemat-
ics, Engineering Mathematics and Higher Engineering
Mathematics, all currently published by Routledge. The
point about Understanding Engineering Mathematics
is that it is all-encompassing. We do not have to think
‘what course does this book apply to?’. The answer
is that it encompasses all courses that include some
engineering content in their syllabus, from beginning
courses up to degree level.

The primary aim of the material in this text is to provide
the fundamental analytical and underpinning knowl-
edge and techniques needed to successfully complete
scientific and engineering principles modules covering
a wide range of programmes. The material has been
designed to enable students to use techniques learned
for the analysis, modelling and solution of realistic engi-
neering problems. It also aims to provide some of the
more advanced knowledge required for those wishing to
pursue careers in a range of engineering disciplines. In
addition, the text will be suitable as a valuable reference
aid to practising engineers.

In Understanding Engineering Mathematics, theory is
introduced in each chapter by a full outline of essential
definitions, formulae, laws, procedures, etc. The theory
is kept to a minimum, for problem solving is extensively
used to establish and exemplify the theory. It is intended

that readers will gain real understanding through see-
ing problems solved and then through solving similar
problems themselves.

The material has been ordered into the following four-
teen convenient categories: number and algebra, fur-
ther number and algebra, areas and volumes, graphs,
geometry and trigonometry, complex numbers, matrices
and determinants, vector geometry, differential calcu-
lus, integral calculus, differential equations, statistics
and probability, Laplace transforms and Fourier series.
Each topic considered in the text is presented in a
way that assumes in the reader very little previous
knowledge.

With a plethora of engineering courses worldwide it is
not possible to have a definitive ordering of material; it
is assumed that both students and instructors/lecturers
alike will ‘dip in’ to the text according to their particular
course structure.

The text contains some 1500 worked problems, 2750
further problems (with answers), arranged within 370
Exercises, 255 multiple choice questions arranged
into 9 tests, 34 Revision Tests, 750 line diagrams and
14 lists of formulae/revision hints.

Worked solutions to all 2750 further problems have
been prepared and can be accessed free via the pub-
lisher’s website (see below).

At intervals throughout the text are some 34 Revision
Tests to check understanding. For example, Revision
Test 1 covers the material in Chapters 1 and 2, Revision
Test 2 covers the material in Chapters 3 to 5, Revi-
sion Test 3 covers the material in Chapters 6 to 8, and
so on.

‘Learning by example’ is at the heart of Understand-
ing Engineering Mathematics.

JOHN BIRD
Defence School of Marine Engineering

HMS Sultan, formerly
University of Portsmouth and Highbury

College, Portsmouth
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Free web downloads via
http://www.routledge.com/cw/bird

Worked Solutions to Exercises

Within the text are some 2750 further problems
arranged within 370 Exercises. Worked solutions
have been prepared and can be accessed free by
students and staff.

Instructor’s manual

This provides full worked solutions and mark
scheme for all 34 Revision Tests in this book.
The material is available to lecturers/instructors
only.

Illustrations

Lecturers can download electronic files for all 750
illustrations within the text.

Famous Mathematicians/Engineers

From time to time in the text, some 38 famous
mathematicians/engineers are referred to and
emphasised with an asterisk*. Background infor-
mation on each of these is available via the website.

Mathematicians/Engineers involved are: Argand,
Bessel, Boole, Boyle, Cauchy, Celsius, Charles,
Cramer, de Moivre, de Morgan, Descartes,
Euler, Fourier, Frobenius, Gauss, Hooke, Kar-
naugh, Kirchhoff, Kutta, Laplace, Legendre,
Leibniz, L’Hopital, Maclaurin, Napier, New-
ton, Ohm, Pappus, Pascal, Poisson, Pythagoras,
Raphson, Rodrigues, Runge, Simpson, Taylor,
Wallis and Young.

John Bird is the former Head of Applied Electron-
ics in the Faculty of Technology at Highbury College,
Portsmouth, UK. More recently, he has combined free-
lance lecturing at the University of Portsmouth with
Examiner responsibilities for Advanced Mathematics
with City and Guilds, and examining for the Interna-
tional Baccalaureate Organisation. He is the author of
over 120 textbooks on engineering and mathematical
subjects, with worldwide sales of one million copies. He
is currently a Senior Training Provider at the Defence
School of Marine Engineering in the Defence College of
Technical Training at HMS Sultan, Gosport, Hampshire,
UK.
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Chapter 1

Basic arithmetic

Why it is important to understand: Basic arithmetic

Being numerate, i.e. having an ability to add, subtract, multiply and divide whole numbers with some
confidence, goes a long way towards helping you become competent at mathematics. Of course electronic
calculators are a marvellous aid to the quite complicated calculations often required in engineering;
however, having a feel for numbers ‘in our head’ can be invaluable when estimating. Do not spend too
much time on this chapter because we deal with the calculator later; however, try to have some idea
how to do quick calculations in the absence of a calculator. You will feel more confident in dealing with
numbers and calculations if you can do this.

At the end of this chapter, you should be able to:

• understand positive and negative integers
• add and subtract whole numbers
• multiply and divide two integers
• multiply numbers up to 12 × 12 by rote
• determine the highest common factor from a set of numbers
• determine the lowest common multiple from a set of numbers
• appreciate the order of precedence when evaluating expressions
• understand the use of brackets in expressions
• evaluate expressions containing +, −, ×, ÷ and brackets

1.1 Introduction

Whole numbers are simply the numbers 0, 1, 2, 3, 4,
5 . . . (and so on). Integers are like whole numbers,
but they also include negative numbers. +3,+5 and
+72 are examples of positive integers; −13,−6 and
−51 are examples of negative integers. Between pos-
itive and negative integers is the number 0, which is
neither positive nor negative.
The four basic arithmetic operators are add (+), subtract
(−), multiply (×) and divide (÷).
It is assumed that adding, subtracting, multiplying and
dividing reasonably small numbers can be achieved
without a calculator. However, if revision of this area

is needed then some worked problems are included in
the following sections.
When unlike signs occur together in a calculation, the
overall sign is negative. For example,

5 + (−2) = 5 + −2 = 5 − 2 = 3
3 + (−4) = 3 + −4 = 3 − 4 = −1

and

(+5) × (−2) = −10

Like signs together give an overall positive sign. For
example,

3 − (−4) = 3 − −4 = 3 + 4 = 7
and

(−6) × (−4) = +24

Understanding Engineering Mathematics. 978-0-415-66284-0, © 2014 John Bird. Published by Taylor & Francis. All rights reserved.
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1.2 Revision of addition and
subtraction

You can probably already add two or more numbers
together and subtract one number from another. How-
ever, if you need a revision then the following worked
problems should be helpful.

Problem 1. Determine 735 + 167

H T U
7 3 5

+ 1 6 7

9 0 2

1 1

(i) 5 + 7 = 12. Place 2 in units (U) column. Carry 1
in the tens (T) column.

(ii) 3 + 6 + 1 (carried) = 10. Place the 0 in the tens
column. Carry the 1 in the hundreds (H) column.

(iii) 7 + 1 + 1 (carried) = 9. Place the 9 in the hun-
dreds column.

Hence, 735 + 167 = 902

Problem 2. Determine 632 − 369

H T U
6 3 2

− 3 6 9

2 6 3

(i) 2 − 9 is not possible; therefore change one ten
into ten units (leaving 2 in the tens column). In
the units column, this gives us 12 − 9 = 3

(ii) Place 3 in the units column.

(iii) 2 − 6 is not possible; therefore change one hun-
dred into ten tens (leaving 5 in the hundreds
column). In the tens column, this gives us
12 − 6 = 6

(iv) Place the 6 in the tens column.

(v) 5 − 3 = 2

(vi) Place the 2 in the hundreds column.

Hence, 632 − 369 = 263

Problem 3. Add 27,−74,81 and −19

This problem is written as 27 − 74 + 81 − 19
Adding the positive integers: 27

81

Sum of positive integers is 108

Adding the negative integers: 74
19

Sum of negative integers is 93

108 + −93 = 108 − 93 and taking the sum
of the negative integers from the sum of
the positive integers gives 108

−93

15

Thus, 27 − 74 + 81 − 19 = 15

Problem 4. Subtract −74 from 377

This problem is written as 377 − −74. Like signs
together give an overall positive sign, hence

377 − −74 = 377 + 74 3 7 7
+ 7 4

4 5 1

Thus, 377 −−74 = 451

Problem 5. Subtract 243 from 126

The problem is 126 − 243. When the second number is
larger than the first, take the smaller number from the
larger and make the result negative. Thus,

126 − 243 = −(243 − 126) 2 4 3
− 1 2 6

1 1 7

Thus, 126 − 243 = −117

Problem 6. Subtract 318 from −269

The problem is −269 − 318. The sum of the negative
integers is

2 6 9
+ 3 1 8

5 8 7

Thus, −269 − 318 = −587
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Now try the following Practice Exercise

Practice Exercise 1 Further problems on
addition and subtraction (answers on
page 1108)

In Problems 1 to 15, determine the values of the
expressions given, without using a calculator.

1. 67 kg − 82 kg + 34 kg

2. 73 m − 57 m

3. 851 mm − 372 mm

4. 124 − 273 + 481 − 398

5. £927 − £114+ £182 − £183 − £247

6. 647 − 872

7. 2417 − 487 + 2424− 1778 − 4712

8. −38419 − 2177 + 2440− 799 + 2834

9. £2715 − £18250+ £11471 − £1509 +
£113274

10. 47 + (−74) − (−23)

11. 813 − (−674)

12. 3151 − (−2763)

13. 4872 g − 4683 g

14. −23148 − 47724

15. $53774 − $38441

12

60

50 38

120

110

B

A

d

Figure 1.1

16. Figure 1.1 shows the dimensions of a tem-
plate in millimetres. Calculate the diameter
d and dimensions A and B for the template.

1.3 Revision of multiplication and
division

You can probably already multiply two numbers
together and divide one number by another. However, if
you need a revision then the following worked problems
should be helpful.

Problem 7. Determine 86 × 7

H T U
8 6

× 7

6 0 2

4

(i) 7 × 6 = 42. Place the 2 in the units (U) column
and ‘carry’ the 4 into the tens (T) column.

(ii) 7 × 8 = 56;56 + 4 (carried) = 60. Place the 0 in
the tens column and the 6 in the hundreds (H)
column.

Hence, 86 × 7 = 602
A good grasp of multiplication tables is needed when
multiplying such numbers; a reminder of the multiplica-
tion table up to 12 × 12 is shown on page 6. Confidence
with handling numbers will be greatly improved if this
table is memorised.

Problem 8. Determine 764 × 38

7 6 4
× 3 8

6 1 1 2
2 2 9 2 0

2 9 0 3 2

(i) 8 × 4 = 32. Place the 2 in the units column and
carry 3 into the tens column.

(ii) 8 × 6 = 48;48 + 3 (carried) = 51. Place the 1 in
the tens column and carry the 5 into the hundreds
column.




